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ABSTRACT: For plastics materials intended to be in con-
tact with food, recent EU regulations, 72/2002/EC and
1935/2004/EC, enforce the assessment of the migration of
502 substances of the 932 positively listed substances. As
mathematical modeling has been proposed to overcome
such considerable effort in particular by providing maxi-
mum acceptable concentrations in the formulation, the com-
pliance testing problem is efficiently reduced to the
identification of substances and to their extent in initial
materials. This work examines a fast identification and
quantification procedure based on a semisupervised decon-
volution procedure of FTIR spectra of polymer extracts in
dichloromethane. The inversion procedure was imple-
mented as a Tikhonov least-square problem and designed
to work on large and open dictionary of substances by com-

bining both spectra of reference additives and normalized
responses of typical chemical functions. The sparsity of the
overall solution was fulfilled with non-negativity con-
straints, while traces were detected by an iterative reweight-
ing and stochastic resonance. The whole methodology was
calibrated onto 21 typical additives of polyolefins and satis-
factory tested on numerical examples and on extracts of
processed films in high-density polyethylene including up
to eight unknown compounds. Maps of possible confusions
and biases were generated for all tested substances.
The mass balance laws for molecules belonging to similar
classes of additives were particularly highlighted. VC 2010
Wiley Periodicals, Inc. J Appl Polym Sci 119: 1492–1515, 2011
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INTRODUCTION

Along the food packaging chain, from raw materials
up to finished products, the information and know-
how is highly asymmetric between the different
stakeholders: producers, converters, packaging fill-
ers, retailers, enforcement laboratories, regulators,
consumers, etc. The resulting incompleteness on a
global market limits the usability of predictive math-
ematical models to check the compliance of materi-
als and articles intended to come in contact with
food or to assess their traceability to facilitate the
control, the recall of defective products, consumer
information, and the attribution of responsibilities,
as encouraged by recent European regulations 2002/
721 and 1935/2004.2 In the case of thermoplastic
materials used on the European market, the legisla-

tion, to which one of us participated, is particularly
complex because it is both very detailed and it is
still in the consolidation phase. Among the 937 sub-
stances (including 340 monomers and 597 additives),
which are positively listed in EU directives on plas-
tics in contact with food,3 502 substances (including
230 monomers and 272 additives) are thus subjected
to specific migration limits (SMLs) because of toxico-
logical concern. Substances, which are not author-
ized because they do not belong to the positive list,
can also be used when they are located behind one
or more layers, which prevents their migration into
foods or food simulants above a detectable level.4

This concept of relative barrier, so-called functional
barrier, has been initially introduced to authorize the
use of certain recycled materials for food contact
applications. Although provisions are lacking or are
divergent, this general principle tends today to be
generalized to any multilayer structure and any sub-
stance including adhesives used in laminates, non-
food contact material, and printing inks. In the con-
text, where the EU Regulation 2023/20065 also lays
down the responsibility of business operators, the
development of rapid methods to identify possible
migrants and their amount in the initial materials is
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of significant concern. Indeed, each business opera-
tor should implement an effective quality manage-
ment to select starting materials, which ensure com-
pliance of the finished material or article. In absence
of a certificate from the provider, which declares the
compliance a priori, or for quality audit purposes,
the extent of the migration of substances subjected
to restrictions may be predicted via mathematical
modeling, while avoiding unnecessary repetitions of
time-consuming compliance studies. Modeling car-
ried out in-house or outsourced has several benefits.
It is an incremental procedure, which can handle
several sources of uncertainty or variability (e.g.,
composition, geometry physicochemical properties,
and storage conditions),6 and, which can be used in
real time to setup internal specifications: acceptable
substances (e.g., molecular mass cutoff) and accepta-
ble concentrations.7

The introduction of fingerprints in good manufac-
turing practices has been suggested in the early con-
clusions of the EU AIR research program CT94-
1025,8 but the recommended technique, 1H-magnetic
resonance, is still not widely available. Conventional
deformulation techniques have been reviewed by
Bart.9 They involve mainly wet chemistry rules on
material extracts, while combining an ever-increas-
ing order of sophistication in analytical ingenuity.
Previous studies demonstrated that the burden
remained on the identification of substances and not
on the extraction step itself, which can be optimized
by an appropriate choice of solvent and an accurate
estimate of the extraction yield.10 For the fast dis-
crimination of extracts involving volatile com-
pounds, electronic noses based on metal oxide sen-
sors have been proposed, but their applications are
still restricted to the detection of off-odors and out-
gassing issues in thermoplastics.9 FT-Raman spec-
troscopy combining with CCD array detectors and
near-infrared diode laser excitation could be an
appealing alternative to tag in situ additives accord-
ing to their vibrational spectra.11 However, the
method is much less applied than infrared methods
because of poor Raman scattering, insufficient repro-
ducibility, and the lack of specific Raman libraries.12

By contrast, mid-infrared spectroscopy is one of the
most established analytical methods in the packag-
ing industry and enforcement laboratories. In partic-
ular, Fourier transform infrared (FTIR) spectroscopy
is supported by commercially available databases
covering polymers and polymer additives, and it is
suited for direct identification on either solid sam-
ples or extracts. Without being exhaustive, several
studies13–19 using mid-infrared techniques demon-
strated the feasibility of the technique to trace the
concentrations of minor constituents such as antioxi-
dants in polyolefins. The usefulness of the technique
to identify the formulation on commercial materials

(i.e., blind materials) including more than three
additives and possible unknown components (i.e.,
without reference spectrum) has, however, never
been tested. Unique identification and corresponding
quantification in mixtures is expected to be hindered
by the presence of similar functional bands regard-
less of the structure of the rest of the molecule.20

Among foreseen difficulties, the spectra of large
polymeric additives may be improperly assigned or
the spectra of reactive phosphorous acid esters, used
as hydroperoxide decomposers, may be confounded
with very similar hindered phenolic antioxidants.21

In the latter case, the confusion may have a signifi-
cant impact on the safety of the tested material, as
the SML is of 60 mg kg�1 for secondary antioxidants
(hydroperoxide decomposers) against 6 mg kg�1 for
primary antioxidants (hydrogen donors).3

Our objective was to design and discuss a gen-
eral and robust framework to retrieve the identifi-
cation and the quantification of major additives in
commercial polyethylene materials by FTIR meas-
urements for compliance testing purposes.22 The
originality of the approach was to include in the
study the most used additives (21 additives) for
packaging applications, while integrating complex
mixtures combining an unknown number of addi-
tives and possibly nondocumented substances (not
belonging to any positive list). It is underlined that
handling unknown substances might help to pre-
vent an accidental contamination of food products
and subsequent crisis, such as the one generated by
the contamination of baby milk23 and other pack-
aged drinks24 by 2-isopropylthioxanthone. This arti-
cle is organized as follows. Theory section describes
the two-step semisupervised regression procedure,
which was setup up for identification and quantifi-
cation on mixtures including an unknown number
of substances and possible unknown ones. The ill-
posedness of the corresponding deconvolution
problem prevented the use of common chemomet-
rics techniques,25 and it was minimized by intro-
ducing constraints on the solution such as non-neg-
ativity and sparsity. Resulting biases were
decomposed and analyzed in terms of false posi-
tives and quantification biases. Experiments are
described in Experimental section. As additives are
heterogeneously distributed in the material, the
methodology was applied to spectra of extracts in
dichloromethane (DCM). This method was found to
be more convenient for routine analysis as it avoids
the scattering problem in semicrystalline polymers
such as polyolefins. Results are presented in
Results and Discussion section on either synthe-
sized spectra or spectra of real extracts for four
typical formulations of high-density polyethylene.
Recommendations for compliance testing are sum-
marized in Conclusions section.
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THEORY

Forward problem: Decomposition of the spectrum
of a mixture

For each measured wavenumber, k, the FTIR absorp-
tion spectrum of a mixture (or an extract) in DCM,

Sktot, was interpreted as a linear superposition of the

spectra due to DCM, SkDCM, n additives Aif gi¼1::n

belonging to a dictionary (i.e., database) of spectra,

SkAi

n o
i¼1::n

, m chemical groups Uj

� �
j¼1::n

not assigned

to Aif gi¼1::n, SkUj

n o
i¼1::n

, extracted oligomers and

other polymer residues (fillers, pigments, coat-

ings. . .), SkPM, and finally a normal error with zero
mean ek:

Sktot ¼ SkDCM þ
Xn
i¼1

SkAi
þ SkPM þ

Xm
j¼1

SkUj
þ ek: (1)

Except the spectrum of the background, all spectra
were assumed to obey to the generalized Beer–Lam-
bert law:

SkAi
¼ akAi

CAi

SkUj
¼ akUj

cUj

SkPM ¼ akPMcPM;

8><
>: (2)

where akk
� �

k¼Ai;Uj;PM
are the products of molar

extinction coefficient of the kth component at the
wavenumber k and the path length (i.e., the width
of the cuvette which was a constant). CAi

f gi¼::n;

cUj

n o
j¼1::m

; cPM are the concentrations in Ai, Ui, and

PM, respectively. By considering wavenumbers
between 550 and 4000 cm�1 (3451 values), eqs. and
lead to the following linear system:

Sk1tot

Sk2tot

:::

Sk3451tot

2
66664

3
77775 ¼

Sk1DCM

Sk2DCM

:::

Sk3451DCM

2
66664

3
77775

þ

ak1A1
::: ak1An

ak1U1
::: ak1Um

ak1PM

ak2A1
::: ak2An

ak2U1
::: ak2Um

ak2PM
::: ::: ::: ::: ::: ::: :::

ak3451A1
::: ak3451An

ak3441U1
::: ak3451Um

ak3451PM

2
66664

3
77775 �

CA1

:::

CAn

cU1

:::

cUm

cPM

2
666666666664

3
777777777775

þ

ek1

ek2

:::

ek3451

2
6664

3
7775;

which was written in a shorter form as:

Stot � SDCM ¼ DCþ e: (4)

A graphical interpretation is given in Figure 1 on a
simple mixture. Stot � SDCM is the spectrum associ-
ated to the mixture with the background associated to
DCM subtracted.D is the dictionary matrix or calibra-
tion matrix containing the normalized spectra of all
available substances and the spectra of functional
groups associated to functional groups. As the meas-
ured intensity for a given chemical group depends on
the sensitivity and linearity of the detector, an optimal
D was obtained by generating the database on a same
spectrometer instead of using a commercial database.
An additional interest was to take into account possi-
ble interactions with DCM and to weight wavelengths
according to the linearity of the detector. A realistic
solution C must minimize the L2-norm ek k2 (variance
of e) while ensuring e has a zero mean. As the num-
ber of wavenumbers is much greater than the num-
ber of unknown compounds, the linear system was
extensively overdetermined. To avoid additional
confusion between the bands present in documented
additives (i.e., in Ai) with generic bands (i.e., in Uj),
generic bands were associated to bump functions,
which guaranteed smooth cutoffs [see Fig. 1(a)].
Equation was relaxed to optimal wavelengths by

introducing a weighting 3451 � 3451 diagonal ma-
trix, W, whose main diagonal elements were ranged
between 0 and 1:

W Stot � SDCMð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
R

¼ WD|ffl{zffl}
D

CþWe: (5)

The relative weight of each wavenumber was
determined from the determination coefficient,

r2k;i

n o
i¼1::n

, derived from the calibration curve of bi-

nary mixtures DCM þ Ai obtained for five different
concentrations. As a heuristic (semisupervised
regression), a weight of 1 at k was assigned when
one of the three following properties was fulfilled:

1. All r2k;i

n o
i¼1::n

values were greater than 0.7 with

at least one value above 0.9;
2. At least one akAi

n o
i¼1::n

was higher than the

70th percentile values of the whole spectrum

akAi

n o
k¼k1::k3541

;

3. At least one akUj

n o
j¼1::m

is significantly higher
than 1.

To increase the signal-to-noise ratio, a smooth spline
cutoff was applied to adjacent wavenumbers with a
cutoff of 5 cm�1 and a transition width of 3 cm�1. It
was verified that this low-cost procedure was almost
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equivalent to a filtering step with zero-phase low pass
band filter of bandwidth 10 cm�1. At the end, for the
21 considered additives and 15 additional chemical
groups, 354 wavenumbers had a weight equal to 1.

The contribution of the polymer was obtained
similarly from the calibration curve obtained for five
different virgin polymer extracts. Because the sub-
stances were unknown, cUj

n o
j¼1::m

and cPM were
expressed in arbitrary units.

Inversion problem: Finding concentrations of
unknown compounds

Linear system, written as R ¼ DC, was poorly condi-
tioned because of significant correlations between the
FTIR spectra of additives with close chemical formula or
including repeated patterns. The practical consequence
was that the large null space of B dominated the solu-
tion vector, C, of the standard least-square problem
C ¼ argmin R� DCk k2. Indeed, any vector of the null
space, DC, could be added to calculate a new solution
of R ¼ DC. Without correction, this method would
give concentration estimates highly sensitive to noise
measurements as well as numerous false positives and
erroneous quantifications. To reduce such artifacts, a
ridge regression was used instead and implemented as
the following Tikhonov regularization problem26:

C ¼ argmin DC� Rk k2þn2 DCCk k2

¼ argmin
D

nDC

� �
C� R

0

� �����
����
2

subjected to Ci � 0f gi¼1:::nþmþ1; ð6Þ

where DG is a (n þ m þ 1) � (n þ m þ 1) diagonal
matrix, where the diagonal term is zero when the con-

centration component is not subjected to any restric-
tion (it may be present) and 1 otherwise, when its con-
tent is expected to be minimal or zero. In other words,
the sparsity of the solution for unknown compounds
Uj

� �
j¼1::m

(i.e., minimizing false positives) was
enforced by introducing an additional distance con-
straint, n2 DCCk k2. The tradeoff between the minimiza-
tion of the fitting error and the constraint was con-
trolled by a positive constant n, so-called Tikhonov
constant. As recommended by Hansen,27 n was set to
homogenize variances between measurements and
predictions:

n2 ¼ var Stot � SDCM;diagðWÞ� �
var C;diagðIÞ� � ; (7)

where var(u,v) is the variance of vector u relatively to
the vector of weights v, diag(W) is the main diagonal
of W, and I is the identity matrix.
As C is not known a priori, an iterative procedure

is applied by starting with n ¼ 0 (unregularized
problem) in eq. . Under these assumptions, the cal-
culated solution is the most likely according to avail-
able measurements and the available database. In
addition, positivity constraints in eq. restricted all
solutions only to feasible ones. They were efficiently
handled using an iterative inversion procedure
method based on the interior-reflective Newton
method.28 The method was started from the solution
calculated without constraint from the truncated sin-
gular value decomposition of D nDC½ �T.
The whole strategy prevented noise components

in the null space (due to mainly overlapping regions
in spectra) to propagate significantly in the approxi-
mated concentration vector. However, the presence
of unexplained residues in the measured spectrum
increased the risk of overestimation of identified
compounds. When disambiguation needed to be
verified or when quantification should be improved
because of nonassigned residual bands in We, Wkk

components with nonzero values were replaced by
1= ekj j. Although the convergence was not guaran-
teed, such refinements focused on measured spec-
trum components, for which the variance could be
the best explained. This reweighting strategy guar-
anteed that the whole methodology would be
applied to any mixture and polymer sample even
when some peaks or patterns could not be
recognized.

Biases associated to identification and
quantification

Difficulties in assessing the composition of even sim-
ple mixtures are illustrated in Figure 2. In this theo-
retical example, an additive with a two-band

Figure 1 Graphical interpretation of normal equation (5),
R ¼ DC, for a mixture including Irganox 1076 (concentration
C1), Irgafos 168 (concentration C2), erucamide (concentration
C3), and Chimassorb 944 (concentration C4) in polyethylene
(concentration cPM). c1 and c2 stand for the concentrations
in simple chemical functions (respectively), whose normal-
ized spectra are plotted in columns 6 and 7 of D.
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spectrum was mixed with an unknown substance
including, according to the considered scenario: no
common band [Fig. 2(a)], one common band [Fig.
2(a)], and two common bands [Fig. 2(c)]. The objective
was to retrieve the true concentration of the additive
(here three in arbitrary units), CA, when only the
spectra of the mixture, R, and of the additive, SA,
were known. The ratio between the known and

unknown substances was set to 2/3. In this simple
example, the Moore-Penrose pseudoinverse was
0.1252ST

A, and the solution corresponding to the theo-
retical normal equation, R ¼ SACA, was 0.1252SST

AR.
This crude approach, which neglected the unknown
substance, led to CA values equal to 3, 3.75, and 4.02
when no, one, and two common bands were present.
Because adding 20% white noise to SA and R gave
2.92, 3.74, and 3.97, respectively, the CA estimates
were almost insensitive to noise, but results were bi-
ased when a nonindexed substance was present. The
overestimation observed, when at least one common
band was present, was caused by the indiscernibility
of the response for some wavenumbers. As previously
suggested, increasing the weight of wavenumbers
where the predicted spectrum was underestimated
could help to reduce the bias. In the absence of noise,
the corrected estimates were 3, 3, and 3.8, respectively.
In the presence of noise, the correction was much less
efficient because of significant confidence intervals on
predictions, which hindered the identification of the
spectrum regions, where the predictions overesti-
mated the measures. On real samples, bands that
looked homothetic exhibited subtle differences, which
were expected to increase the well posedness of the
mathematical attribution of bands.
The biases associated to an erroneous attribution

of bands were calculated systematically by analyzing
all the 21 � 20 binary mixtures (note that the matrix
of pair interactions is symmetric), mixing a sub-
stance X and a substance Y with X = Y. The overall
objective was to retrieve a table of possible pairs,
which might yield a false identification of the sub-
stance, a poor detection level, an erroneous quantifi-
cation, etc. when the whole dictionary of known
substances (21) was used for the identification. For a
given pair, the total bias, btot, was decomposed as:

btot ¼ Ĉall
Y � CY

D E
Y
¼ b00 þ bXYX0

	 

X
þ ballX0

D E
X

þ bXYX0
	 


Y
þ ballX0

D E
Y
þ b0Yh iYþ bXYXY

	 

X;Y

þ ballXY

D E
X;Y

ð8Þ

where Ĉall
Y is the estimated concentration in Y when

the whole inversion procedure was applied, CY is the
‘‘true’’ concentration in Y in the mixture. For each pair
X and Y, a normalized range of concentrations includ-
ing 11 levels for CX and CY (11 � 11 combinations)
was used to evaluate biases. To get realistic estimates,
a 10% white noise was added to the spectrum of each
mixture. hiL is the average operator over all realiza-
tions, which verifies the subset of rules L.
b00 is the systematic bias due to identification irre-

spectively of the considered substances. bXYX0
	 


X
and

ballX0

D E
X

assess the nonspecific false detection level

associated to the substance X when no other sub-
stance is added to the mixture, respectively, when

Figure 2 Theoretical example including an additive with
a known spectrum (including three bands) and an
unknown substance or residue with: (a) no common band,
(b) one common band, and (c) two common bands. [Color
figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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the dictionary is reduced to substances X and Y, and

when all known substances are incorporated. bXYX0
	 


Y

and ballX0

D E
Y

assess the false detection level on Y

related to the incorporation of any substance X,
respectively, when the dictionary is reduced to sub-
stances X and Y, and when all known substances
are incorporated.
b0Yh iY is the bias of quantification associated to Y
alone, when no other substance is added to the mix-
ture. This bias was different of 0 only when the
whole dictionary was used. bXYXY

	 

Y

and ballXY

D E
Y

assess the biases-associated interaction between X
and Y, respectively, when the dictionary is reduced
to substances X and Y, and when all known substan-
ces are incorporated.

EXPERIMENTAL

Formulation of samples

To test the whole identification and quantification
methodology on real samples, four high-density
polyethylenes with typical formulations were formu-
lated at semi-industrial scale. Formulations are
detailed in Table I, and they include antioxidants,
light stabilizers, surface agents, and swelling agent.
Chemical structures of additives are represented in
Table I. They include most of typical chemical
groups absorbing in FTIR: alcohol, aldehyde, ketone,
aromatic circle, tert-butyl, ester, thioester, phosphite,
amine, amide, benzotriazine, and benzotriazol. Plas-
tic additives were provided by Ciba (Switzerland)
except Erucamide, which was obtained from Croda
(Italy), and calcium stearate, which was obtained
from Merck (Germany). Virgin high-density polyeth-
ylene was obtained from ATOCHEM (France). Poly-
mer flakes were formulated during a first extrusion
step before final processing at semi-industrial scale
as 150-mm-wide and 0.2-mm-thick ribbons by a sec-
ond extrusion and subsequent calendering. Both
extrusion steps were performed at 200�C, and poly-
mer flakes were dried during 4 h at 40�C between
formulation and final processing. The final density
and the melting point were of 940 kg m�3 and
136�C, respectively. The crystallinity was evaluated
to 72.5% by differential scanning calorimetry.

Extraction of additives from samples

Extraction of additives from films was performed by
soxhlet extraction in DCM (ACROS organics, Bel-
gium). Ten grams of films cut in 5 mm � 5 mm
pieces were placed in contact with 100 mL of DCM,
40 h, at 40�C. To prevent the degradation of addi-
tives and polymer chain scissions during the extrac-
tion step, 100 lL L�1 of triethylphosphite (Sigma-

Aldrich, USA) was added to DCM. Long-term
extraction was required to get accurate reference
estimates of the formulation of processed films. For
compliance testing or rapid screening, this constrain-
ing procedure could be replaced by a 40-min pres-
surized solid–liquid extraction.

Reference concentration measurements

Reference concentrations were measured by high-
performance liquid chromatography (HPLC) associ-
ated to an UV diode array detector and an evapora-
tive light scattering detector in series. The HPLC
protocol was similar to the one described by Gar-
rido-López and Tena.29 The HPLC system consisted
of a Waters 717plus autosampler, a Waters 600 con-
troller equipped with a thermostatted column com-
partment, and an in-line degasser AF (Waters, USA).
Separation was achieved on an Xterra C8 column
(150 mm � 3.0 mm; 5-lm particles; Waters, USA)
operated at 60�C.

FTIR measurements

Absorption spectra of extracts in DCM were
acquired between 4000 and 550 cm�1 in a 100-lm-
thick cuvette (model moni-cell, Eurolab, Germany)
located in a Fast FTIR spectrometer (model spectrum
One, Perkin-Elmer, USA) at 23�C. Reference spectra
of additives at different concentrations, ranging
between 10�1 and 10�4 mol L�1, were acquired simi-
larly in DCM.
As previously discussed, to increase the sensitivity

to small differences, a white noise, ranged between
0.1 and 1%, and smaller than the repetition error,
was added to measured spectra before applying the
deconvolution. This procedure was repeated until to
achieve a convergence of concentration estimates.

RESULTS AND DISCUSSION

FTIR spectra of a typical BHT pattern

Absorption spectra of a typical additive pattern,
BHT, are plotted in Figure 3 when the contribution
of the solvent DCM was removed. The linear
increase of the band absorption with concentration
was used to identify specific mid-infrared bands of
BHT. The proposed assignation of bands relied on
the analysis proposed in Ref. 30. The fundamental
vibrations in the 3700–3600 cm�1 region were due to
OAH stretching of the phenol group. The broad
band between 3100 and 3000 cm�1 was associated to
CAH attached to the aromatic ring. The 1500–650
cm�1 region with a forest of bands was referred as
the finger print region, which revealed the signature
of most bending and skeletal vibrations. It is worth

METHOD TO ASSESS THE COMPOSITION OF A POLYOLEFIN 1497

Journal of Applied Polymer Science DOI 10.1002/app



T
A
B
L
E
I

S
u
b
st
a
n
ce
s
T
e
st
e
d
a
n
d
L
is
te
d
in

th
e
D
ic
ti
o
n
a
ry

fo
r
Id
e
n
ti
fi
ca
ti
o
n
a
n
d
Q
u
a
n
ti
fi
ca
ti
o
n

D
is
ta
n
ce

ra
n
k
a

C
o
m
m
er
ci
al

n
am

e
S
y
st
em

at
ic

ch
em

ic
al

n
am

e
A
d
d
it
iv
e
cl
as
s

C
A
S
n
u
m
b
er

M
(g

m
o
l�

1
)

C
h
em

ic
al

st
ru
ct
u
re

1
B
H
T

2,
6-
D
i-
te
rt
-b
u
ty
l-
4-

m
et
h
y
lp
h
en

o
l

H
y
d
ro
g
en

d
o
n
o
r

00
01
28
-3
7-
0

22
0

2
Ir
g
an

o
x
13
30

1,
3,
5-
T
ri
m
et
h
y
l-
2,
4,
6-

tr
is
(3
,5
-d
i-
te
rt
-b
u
ty
l-
4-

h
y
d
ro
x
y
b
en

zy
l)
b
en

ze
n
e

H
y
d
ro
g
en

d
o
n
o
r

01
70
9-
70
-2

77
4

3
Ir
g
an

o
x
10
76

O
ct
ad

ec
y
l
3-
(3
,5
-d
i-
te
rt
-

b
u
ty
l-
4-
h
y
d
ro
x
y
p
h
en

y
l)

p
ro
p
io
n
at
e

H
y
d
ro
g
en

d
o
n
o
r

20
82
-7
9-
3

53
0

4
Ir
g
an

o
x
P
S
80
0

T
h
io
d
ip
ro
p
io
n
ic

ac
id
,

d
id
o
d
ec
y
l
es
te
r

H
y
d
ro
p
er
o
x
id
e

d
ec
o
m
p
o
se
r

00
12
3-
28
-4

51
5

1498 GILLET, VITRAC, AND DESOBRY

Journal of Applied Polymer Science DOI 10.1002/app



T
A
B
L
E
I.
C
on
ti
n
u
ed

D
is
ta
n
ce

ra
n
k
a

C
o
m
m
er
ci
al

n
am

e
S
y
st
em

at
ic

ch
em

ic
al

n
am

e
A
d
d
it
iv
e
cl
as
s

C
A
S
n
u
m
b
er

M
(g

m
o
l�

1
)

C
h
em

ic
al

st
ru
ct
u
re

5
Ir
g
an

o
x
P
S
80
2

D
io
ct
ad

ec
y
l

th
io
d
ip
ro
p
io
n
at
e

H
y
d
ro
p
er
o
x
id
e

d
ec
o
m
p
o
se
r

00
69
3-
36
-7

68
3

6
Ir
g
an

o
x
15
20

2,
4-
B
is
(o
ct
y
lt
h
io
m
et
h
y
l)
-6
-

m
et
h
y
lp
h
en

o
l

M
u
lt
if
u
n
ct
io
n
al

h
y
d
ro
g
en

d
o
n
o
r

11
05
53
-2
7-
0

42
4

7
A
tm

er
16
3

N
,N

-b
is
(2
-h
y
d
ro
x
y
et
h
y
l)
-

al
k
y
l(
C
13
-C

15
)a
m
in
e

A
n
ti
st
at
ic

ag
en

t
10
70
43
-8
4-
5

28
7–
31
5

8
S
te
ar
ic

ac
id

O
ct
ad

ec
an

o
ic

ac
id

L
u
b
ri
ca
n
t

00
05
7-
11
-4

26
8

9
E
ru
ca
m
id
e

(1
3Z

)-
d
o
co
s-
13
-e
n
am

id
e

S
li
p
ag

en
t

00
11
2-
84
-5

33
7

10
T
in
u
v
in

32
6

2-
(2
-H

y
d
ro
x
y
-3
-t
er
t-
b
u
ty
l-

5-
m
et
h
y
lp
h
en

y
l)
-5
-

ch
lo
ro
b
en

zo
tr
ia
zo

le

U
V

ab
so
rb
er

03
89
6-
11
-5

31
6

METHOD TO ASSESS THE COMPOSITION OF A POLYOLEFIN 1499

Journal of Applied Polymer Science DOI 10.1002/app



T
A
B
L
E
I.
C
on
ti
n
u
ed

D
is
ta
n
ce

ra
n
k
a

C
o
m
m
er
ci
al

n
am

e
S
y
st
em

at
ic

ch
em

ic
al

n
am

e
A
d
d
it
iv
e
cl
as
s

C
A
S
n
u
m
b
er

M
(g

m
o
l�

1
)

C
h
em

ic
al

st
ru
ct
u
re

11
T
in
u
v
in

77
0

B
is
(2
,2
,6
,6
-t
et
ra
m
et
h
y
lp
i-

p
er
id
in
-4
-y
l)

d
ec
an

ed
io
at
e

R
ad

ic
al

sc
av

en
g
er

52
82
9-
07
-9
-

48
1

12
Ir
g
an

o
x
10
35

T
h
io
d
ie
th
an

o
l
b
is
(3
-(
3,
5-

d
i-
te
rt
-b
u
ty
l-
4-
h
y
d
ro
x
y
-

p
h
en

y
l)
p
ro
p
io
n
at
e)

M
u
lt
if
u
n
ct
io
n
al

h
y
d
ro
g
en

d
o
n
o
r

41
48
4-
35
-9

64
2

13
Ir
g
an

o
x
24
5

T
ri
et
h
y
le
n
eg

ly
co
l
b
is
(3
-(
3-

te
rt
-b
u
ty
l-
4-
h
y
d
ro
x
y
-5
-

m
et
h
y
lp
h
en

y
l)

p
ro
p
io
n
at
e)

H
y
d
ro
g
en

d
o
n
o
r

03
64
43
-6
8-
2

58
6

14
Ir
g
an

o
x
30
52

2-
(1
,1
-D

im
et
h
y
le
th
y
l)
-6
-

[3
-(
1,
1-
d
im

et
h
y
le
th
y
l)
-2
-

h
y
d
ro
x
y
-5
-m

et
h
y
lp
h
en

y
l]

m
et
h
y
lp
h
en

y
l
ac
ry
la
te

M
u
lt
if
u
n
ct
io
n
al

h
y
d
ro
g
en

d
o
n
o
r

61
16
7-
58
-6

39
4

1500 GILLET, VITRAC, AND DESOBRY

Journal of Applied Polymer Science DOI 10.1002/app



T
A
B
L
E
I.
C
on
ti
n
u
ed

D
is
ta
n
ce

ra
n
k
a

C
o
m
m
er
ci
al

n
am

e
S
y
st
em

at
ic

ch
em

ic
al

n
am

e
A
d
d
it
iv
e
cl
as
s

C
A
S
n
u
m
b
er

M
(g

m
o
l�

1
)

C
h
em

ic
al

st
ru
ct
u
re

15
T
in
u
v
in

62
2

P
o
ly
(4
-h
y
d
ro
x
y
-2
,2
,6
,6
-t
et
-

ra
m
et
h
y
l-
1-
p
ip
er
id
in
e

et
h
an

o
l-
al
t-
1,
4-
b
u
ta
n
e-

d
io
ic

ac
id
)

L
ig
h
t
st
ab

il
iz
er

65
44
7-
77
-0

31
00
–4
00
0

16
Ir
g
af
o
s
16
8

T
ri
s(
2,
4-
d
i-
te
rt
-b
u
ty
l-

p
h
en

y
l)
p
h
o
sp

h
it
e

H
y
d
ro
p
er
o
x
id
e

d
ec
o
m
p
o
se
r

31
57
0-
04
-4

64
7

17
C
h
im

as
so
rb

81
2-
H
y
d
ro
x
y
-4
-n
-

o
ct
y
lo
x
y
b
en

zo
p
h
en

o
n
e

L
ig
h
t
st
ab

il
iz
er

01
84
3-
05
-6

32
6

METHOD TO ASSESS THE COMPOSITION OF A POLYOLEFIN 1501

Journal of Applied Polymer Science DOI 10.1002/app



T
A
B
L
E
I.
C
on
ti
n
u
ed

D
is
ta
n
ce

ra
n
k
a

C
o
m
m
er
ci
al

n
am

e
S
y
st
em

at
ic

ch
em

ic
al

n
am

e
A
d
d
it
iv
e
cl
as
s

C
A
S
n
u
m
b
er

M
(g

m
o
l�

1
)

C
h
em

ic
al

st
ru
ct
u
re

18
C
h
im

as
so
rb

94
4

P
o
ly
[6
-[
(1
,1
,3
,3
-t
et
ra
m
e-

th
y
lb
u
ty
l)
am

in
o
]-
1,
3,
5-
tr
i-

az
in
e-
2,
4-
d
iy
l]
-[
(2
,2
,6
,6
-

te
tr
am

et
h
y
l-
4-
p
ip
er
id
y
l)
-

im
in
o
]h
ex
am

et
h
y
-

le
n
e[
(2
,2
,6
,6
-t
et
ra
m
et
h
y
l-

4-
p
ip
er
id
y
l)
im

in
o
]

U
V

li
g
h
t
st
ab

il
iz
er

71
87
8-
19
-8

20
00
–3
10
0

19
Ir
g
an

o
x
31
14

1,
3,
5-
T
ri
s(
3,
5-
d
i-
te
rt
-b
u
ty
l-

4-
h
y
d
ro
x
y
b
en

zy
l)
-1
,3
,5
-

tr
ia
zi
n
e-
2,
4,
6(
1H

,3
H
,5
H
-

)t
ri
o
n
e

H
y
d
ro
g
en

d
o
n
o
r

27
67
6-
62
-6

78
4

20
Ir
g
an

o
x
10
10

P
en

ta
er
y
th
ri
to
l

te
tr
ak

is
(3
-(

3,
5-
d
i-
te
rt
-b
u
ty
l-

4-
h
y
d
ro
x
y
p
h
en

y
l

)p
ro
p
io
n
at
e)

H
y
d
ro
g
en

d
o
n
o
r

06
68
3-
19
-8

11
78

1502 GILLET, VITRAC, AND DESOBRY

Journal of Applied Polymer Science DOI 10.1002/app



to notice that the vibrational response of DCM per-
turbed some bands in this region, so that the sub-
tracted spectra appeared discontinuous at some
wavenumbers [Fig. 3(a)].
Our automatic weighting procedure recognized

accordingly the major bands and in particular the
signature of the random reorientation of both tert-
butyl groups. By combining the information of all
tested 21 additives (Table I), it was obvious that
most of the available degrees of freedom for identifi-
cation came from the fingerprint region and were
controlled by the lateral hindering groups. Indeed,
the alcohol band and the rigid CAH bands were
much less specific as most of antioxidants included
a phenol group. Only the terminal part of the 1830–
1650 cm�1 region of carbonyl group was incorpo-
rated in the full analysis. Secondary amine groups
stretching, usually observed between 3400 and 3300
cm�1, was also selected for Atmer, Chimassorb 944,
and Tinuvin series. Aromatic CAN stretching in tria-
zine and in aromatic amines, the aliphatic CAN
stretching, and the NAH wagging band were also
included, respectively, at 1590–1520 cm�1, 1360–1250
cm�1, 1220–1020 cm�1, and around 715 cm�1. The al-
iphatic PAO stretching and the thioether function,
present in secondary antioxidants, were merged in
the middle of the finger print region at 1450–1430
cm�1 and at 700–600 cm�1, respectively. Finally,
CAH stretching bands from aliphatic domains,
which occur in the range 3000–2850 cm�1, were also
introduced to derive the contribution of oligomers in
the mixture.

Degrees of similitude between the FTIR spectra of
tested additives

The presence of resembling chemical groups for
molecules with similar technological function com-
plicated the identification of those substances. This
effect is illustrated in Figure 4 by comparing the nor-
malized spectra of additives, Irganox 1076 and Irga-
nox PS800, with partly dissimilar chemical structures
but with close signatures. The concentration ratio,
which maximized the resemblance between the spec-
tra of both additives, was determined from the
right-singular vectors of D reduced to the two addi-
tives columns. The CAH stretching band from ali-
phatic segments in the range 3000–2850 cm�1 domi-
nated the response of both molecules. The carbonyl
stretching in the 1830–1650 cm�1 region was highly
recognizable but not enough specific to separate
both molecules. Tenuous differences appeared along
the whole fingerprint region. Although they contrib-
uted to about 21% of the overall mean square differ-
ence between both spectra, they were much more
specific.
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To assess the importance of the fingerprint region
in the separation of substances, the former compari-
son was applied to all 22 � 22 pairs including the 21
additives and the polymer itself. The Euclidian dis-
tances between all spectra, assembled as a similarity
matrix, were used to reconstruct a theoretical map of
proximities between tested substances in a low-
dimensional space. The scatter was maximized by
projecting the distances onto a three-dimensional
space with an average distance error of 16% and a
maximum error up to 60%. The same similarity ma-
trix was used to obtain a hierarchical classification of
the proximity of spectra based on the averaged dis-
tances between groups of substances. Distance maps
and dendrograms are plotted in Figure 5 when the
whole spectra or the fingerprint regions were used.
They confirmed that only few substances could be
identified undoubtedly, among them: Tinuvin 622,
Irganox 1010, Triethylphosphite, and Chimassorb 944.
The analysis of the fingerprint region increased glob-

ally the discrimination, with significant improve-
ments for Irgafos 168 and Chimassorb 81. On one
hand, the small distances generally observed between
spectra confirmed the mathematical ill-posedness of
the inversion of eq. (6). On the other hand, the distan-
ces maps suggested that clustering of molecules,
whose distances were below a threshold normalized
distance (e.g., 0.5), could help to identify the number
of some typical chemical patterns present in the mix-
ture. Thus, although BHT, Irganox 1330, Irganox 1035,
and Irganox 1076 had very similar spectra, the con-
centration in BHT patterns could be guessed from
their responses in the fingerprint region as they were
almost proportional to the number of embedded
BHT, respectively, 1, 4, 2, and 1.

Biases estimates on binary mixtures

Previous considerations were based on well-defined
spectra of molar extinction coefficients and not on
crude spectra of mixtures. In addition, they did not
take into account and the cutoff distance introduced
by the inversion procedure itself. Biases associated
to the similarities among the 21 additives were cal-
culated by applying the whole procedure to all com-
binations of binary mixtures. A white noise level of
5% was added to all mixtures, and the concentra-
tions were sampled from 500 repetitions. The biases

Figure 3 Absorption FTIR spectra of BHT in DCM with
background subtracted: (a) raw spectra at different concen-
trations, (b) spectra regions with a relative weight of 1
according to the number of additives considered in the
dictionary: BHT alone (SmBHT

BHT ) and BHT with the full
database (SmallBHT).

Figure 4 Spectra of Irganox 1076 and Irganox PS800 nor-
malized to maximize similitudes: (a) whole range of wave-
numbers and (b) details in the fingerprint region. [Color
figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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were linearly decomposed according to eq. (8). To
assess the relevance of non-negativity constraints,
detection biases were calculated according to uncon-
strained solutions of eq. (6). The systematic bias, b00,
was found not significant. The other biases, related
to identification and to quantification, are summar-
ized in Figures 6 and 7, respectively, for a dictionary
including only the two tested molecules or the
whole set of 21 additives. All molecules were
indexed according to the overall distances between
spectra plotted in dendrogram 6b to highlight the
correlations between biases and spectra closeness.

The disruptor character of a given substance in a
mixture was assessed by a bXYX0

	 

X

or ballX0

D E
X

value
different from 0 [Fig. 6(a,b)]. Only Tinuvin 326, an
ultraviolet absorber, including amines functions and
a BHT pattern, acted as a ‘‘chimera’’ and hindered
the detection of several substances with partial re-
semblance. Its signature was, however, unique and
it was always detected, when it was present. Mole-
cules subjected to an elevated risk of false positive
were revealed by a significant positive bias bXYX0

	 

Y

or ballX0

D E
Y
[Figs. 6(c) and 7(d)]. On the opposite, mol-

ecules with high detection threshold were identified

Figure 5 Distance map between spectra of tested substances: (a, b) whole spectra and (c, d) fingerprint region. [Color fig-
ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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by a negative bias. Working with a large set of sub-
stances in the database reduced both risks by spread-
ing the total variance on more degrees of freedom
(i.e., more substances). The confusion matrix [Fig.
6(e)] revealed that all substances including a signifi-
cant pattern such as BHT or several amine functions
were subjected to significant detection threshold, as
they might be replaced by molecules with a similar
pattern. In practice, large spots in the confusion ma-
trix read column-wise should be interpreted as falsely
detected molecules susceptible to mask the one indi-
cated on the row title. The masking intensity was
expressed as the expected molar concentration in the
true substance. Reciprocally, the same matrix read
row-wise gave the underestimation factor because of
a false assignment to other substances.

Quantification biases took into account the interac-
tions between pairs of additives. As these interac-

tions were associated to confusion between substan-
ces, they were mainly negative. The true
concentrations were on an average lowered by a
value b0Yh iY when only the measured substance was
present in the mixture [Fig. 7(a)]. As expected from
previous behaviors, the negative deviation was max-
imal for Tinuvin 326 and molecules including a BHT
pattern. The introduction of a second substance
increased the previous trend with an additional
deviation ballXY

D E
Y

mostly negative [Fig. 7(c)]. The
confusion matrix extended to quantifications [Fig.
7(d)] assessed the average amount, which should be
related to the molecule read row-wise.

Deconvolution of theoretical complex mixtures

In practice, mixtures are expected to contain more
than two unknown substances and a significant

Figure 6 Identification biases on Y for binary mixtures X þ Y as defined in eq. (8) when Y is not present in the mixture:
(a, b) average false detection level generated by all substances X listed in the dictionary, bXYX0

	 

Y

and ballX0

D E
Y
; (c, d) av-

erage false detection levels generated by the substance X on all possible Y listed in the dictionary, bXYX0
	 


X
and ballX0

D E
X
; (e) false detection associated to a specific substance X. Biases in a and c were calculated with

dictionaries containing only molecules X and Y, whereas they were calculated with all 21 additives in b, d,
and e. Signed biases were obtained by removing non-negativity constraints in eq. (6). Substances are ordered
according to the distances between spectra plotted in Figure 5(b).
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amount of oligomers and other residues from the
polymer, denoted PE. In addition, some substances
can be missing in the dictionary. To assess the per-
formance of the identification procedure defined by
eq. (6), three typical situations were theoretically
constructed from the individual spectrum of each
substance:

• Extract A: five substances with low binary
biases and PE; all substances are indexed in
the dictionary;

• Extract B: three substances with significant
binary biases and PE; all substances are
indexed in the dictionary;

• Extract C: five substances and PE; three sub-
stances are not indexed in the dictionary
(three columns are removed from D).

To match real extracts, the concentration in PE
was set to contribute to 15% to the whole variance
of the measured spectrum. The inversion procedure

was applied on the synthesized spectra including
5% of white noise. To retrieve a reliable statistics on
5 and 95% percentiles, the whole process was reiter-
ated 500 times. All determinations relied on a large
dictionary, including 21 substance accessions, except
for extract C where only 18 entries were considered,
and including four generic chemical group acces-
sions: CAS, CAN, CAO, and NAH. The correspond-
ing identification and quantification results are plot-
ted in Figure 8 as residues spectra and as expected
concentrations for all possible molecules and chemi-
cal groups listed in the database. To help the identi-
fication of possible false assignation of substances,
the molecules were ordered according to the overall
distances between spectra as plotted in Figure 5(b).
It is thus highlighted that a concentration attributed
to a given substance could also be shared with mole-
cules in the neighborhood (i.e., with a similar
response). As molar concentrations were used, the
mass balance between homologous molecules could
be determined.

Figure 7 Quantification biases on Y concentration for binary mixtures X þ Y as defined in eq. (8): (a) biases associated
to Y alone when no W was added, b0Yh iY ; (b, c) average biases associated to increasing concentrations in X for
all possible X; (d) biases associated to a specific substance X. Biases in b were calculated with dictionaries
containing only molecules X and Y, whereas they were calculated with all 21 additives in a, c, and d.
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In extract A, all molecules were well identified
with predicted concentrations in good agreement
with theoretical ones [Fig. 8(a)]. Because of the pres-
ence of some false positives, the concentrations
tended to be underestimated. False positives were
easily separated from real additives as their concen-
trations were one magnitude order much lower. In
real processed materials, they would appear with
concentrations much lower than those recommended
by the industry. It is underlined that the solution
remained mainly sparse, and that no additional
functional group was introduced by the resolution
algorithm. As they are subjected to different SMLs,
the separation between primary antioxidants (Irga-
nox 1076, Irganox 1010, and Irganox 3114), second-
ary antioxidants (Irgafos 168), and light stabilizer
(Chimassorb 944) was particularly remarkable.

A similar behavior was observed in extract B [Fig.
8(b)]. Irganox 1076 was, however, not identified and
was replaced by a false-positive Irganox PS800 with
a very similar absorption spectrum (Fig. 4). The sur-
face agent Atmer 163 tended to be mistaken for

polyethylene residues. Besides, as Irganox 1076 pre-
sented an aliphatic group similar to octodecane, it
led to a significant overestimation of polyethylene
residues contribution.
Mixture C was a complex case, where Irganox 1076,

Irganox PS802, and Tinuvin 770 were present in the
mixture with respective concentrations of 20, 7, and
10 mol L�1 but missing in the dictionary D. Under
constraints of non-negativity, the total variance could
not be explained by the listed substances alone, and
four additional functions were additionally identified.
Although its spectrum was unknown, Irganox 1076
was substituted in a consistent manner by BHT and
Irganox PS800 with a very similar spectrum (Fig. 4).
The introduction of CAS and NAH functions was a
reliable signatures of molecules belonging to the fam-
ily of Irganox PS802 and Tinuvin 770, respectively. As
the spectra of such functions were idealized, they
could not be used for quantification.
Examples follow-up drove some practical conclu-

sions. Phosphorous acid esters such as Irgafos 168
were well identified and quantified. Chimassorb 944,

Figure 8 Identification and quantification capabilities on three typical synthesized mixtures including 5% white noise: (a)
extract A, (b) extract B, and (c) extract C. Spectra include the synthesized spectrum, S, the calculated spectrum after iden-
tification, Scalc, and the residues, e. Calculated concentrations in DCM are gathered as intervals for all listed species in the
dictionary. Each interval represents the 95% confidence intervals based over 500 repetitions. Zeroed concentrations in the
solution have signed value equal to the theoretical detection limit (DL). True concentrations appeared as open triangles.
Chemical functions are reported only when their concentrations were determined non null.
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Tinuvin 622, and Irganox 3114 were well quantified
but subjected to false positive. Erucamide was iden-
tified but its concentration was underestimated. Irga-

nox 1076 was never identified, whatever it was pres-
ent or not, and was systematically replaced by
Irganox PS800. Removing Irganox PS800 from D

Figure 9 Identification and quantification capabilities on four real extracts from high-density polyethylene films: (a) PE1,
(b) PE2, (c) PE3, and (d) PE4. The data are expressed as in Figure 8 except the concentrations are reported in the initial
processed films instead of in the extracts. Concentrations measured on the same samples by a standard HPLC method
appeared as open triangles.
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corrected the situation, but it was not a reliable
choice on commercial samples. The overall approach
was enough robust to propose additional functions
where a compound in the mixture exhibited a spec-
trum sufficiently different from those recorded. The
procedure can be easily enriched by the introduction
of new substances.

Deconvolution of the extracts of real formulations

In the previous examples, the deconvolution was
applied to mixtures where each compound was
introduced with nominal concentrations. Within a
real mixture, the deconvolution was complicated by
a contribution to the total variance, which was
highly inhomogeneous. To get a multiscale deconvo-
lution procedure either on major and minor substan-
ces, the following two-pass deconvolution procedure
was applied to four different real formulations of
HDPE, denoted {PEi}i ¼ 1..4:

1. application of normal weights, W, to all wave-
numbers and identification;

2. reweighting W according to 1= emj j from previ-
ous step and identification restricted to the
nonfingerprint region (above 1500 cm�1);

3. reweighting W according to 1= emj j from previ-
ous step and identification restricted to nitro-
gen-containing compounds between 1500 and
2500 cm�1 and beyond 3200 cm�1;

4. all previous steps were reiterated by starting
from step 3 down to step 1.

The concentrations of minor compounds, which
explained less than 20% of the total variance, were
defined as the maximum of six determinations. The
concentrations of other compounds were derived
from step 1 alone to prevent additional biases due to
nonlinear approximations of spectra deviations. The
two-pass deconvolution in forward and reverse
order with iterative reweighting ensured that details
in the nonfingerprint region, which supports most of
the variance, could be revealed without introducing
a large numbers of false positive. The overall spar-
sity of the solution was controlled thanks to non-
negativity constraints applied to all steps. Spectra
obtained at step 1 and final concentrations after the
two-pass deconvolution are plotted in Figure 9. The
concentration results are expressed in the usual
manner for compliance testing in mg kg�1 of poly-
mer (Table II). An arbitrary threshold of 0.1 mg kg�1

was applied to all unidentified substances. Confi-
dence intervals were obtained by adding 5% white
noise to the measured spectrum and by repeating
the whole procedure 500 times. This protocol con-
tributed via stochastic resonance to enhance the

response of the deconvolution procedure to small
contributions.
Although the identification was not exact for all

substances, the magnitude orders agreed well the
real contents. False positives appeared at much
lower concentrations (traces) or involved molecules
with very close spectra and/or with close chemical
structure. As a rule of thumb, most of false positive
were reliably identified by large confidence intervals
over about one magnitude order. Exceptions
appeared for linear molecules easily confused with
polymer residues such as Atmer 163 and for mole-
cules including presenting several BHT patterns.
Because of false positives, the concentrations of most
identified substances were underestimated.
In details, PE1 had a composition close to the

previous extract B and exhibited a very similar
behavior. Irganox 1076 was replaced by Irganox
PS800 and in a less extent by Tinuvin 770. Trie-
thylphosphite and Erucamide were well identified.
According to Figure 7(e), the underestimation
would be caused by 1076, Erucamide and triethyl-
phosphite. PE2 contained three light absorbers and
two of them were detected. Chimassorb 81 was
reliably detected, whereas Chimmassorb 944 was
mistaken with antioxidants Irganox 3114 and Irga-
nox 1010, whose responses are closely related as
illustrated Figure 7(e). Similarly, the Tinuvin 622
contribution was partly replaced by an amount of
Irganox 3052. PE3 and PE4 were very realistic for-
mulations of polyethylene including primary anti-
oxidants, secondary antioxidants, and light stabil-
izers. The method identified either the right
substance or the immediately adjacent substances.
The analyses were highly convincing in PE3,
whereas they were more difficult to interpret in
PE4. However, two substances or analogous ones
were not identified in PE4: Chimassorb 944 and
Tinuvin 622. As both additives are polymeric, they
might be identified as smaller additives with simi-
lar chemical formula. Tinuvin 326 could thus
replace Tinuvin 622. The last poorly identified sub-
stance, Erucamide, was replaced consistently by
Atmer 163.
The ability of the whole approach to predict the

lumped concentration of additives belonging to a
same class of additives or chemical functions is pre-
sented in Figure 10. The corresponding estimated
concentrations were cumulated by classes and plot-
ted against their reference values in the four tested
samples. On complex extracts, the proposed simplifi-
cations made it possible to merge reconstructions
from substances with tangled spectra. The predic-
tions were in well agreement for primary and sec-
ondary antioxidants, and ultraviolet light absorbers.
Significant underestimation occurred only for sur-
face modifiers.
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Separation of additives by their chemical functions

As tested phenolic antioxidants additives included a
repeated BHT pattern and could be confused with
other hindered molecules such as light stabilizer,
their absolute identification was identified as a stiff
mathematical problem. As a typical example, the
ubiquitous Irganox 1076 was commonly mistaken
with a less common antioxidant Irganox PS800. A
possible strategy to identify robustly Irganox 1076
and to contribute to separate antioxidants between
several alternatives was to obtain a signature of the
two patterns characteristic of Irganox 1076: the BHT
head and the complementary tail, consisting in an
ester function and an octadecane block. Because
PS800 does not include any BHT pattern, the pres-
ence of Irganox 1076 could be estimated very likely
as soon as the ratio between the number of BHT
head pattern and the number of tail pattern would
be significantly greater than 0. On the opposite, a
value closer to unity would reveal the presence of a
significant amount of hindered phenolic antioxidants
comprising several BHT patterns. By contrast, values
greater than 1 were very unlikely as the signature of
the tail was common several additives. The signa-
ture of the tail in Irganox 1076 was retrieved by sub-
tracting the BHT contribution from the molar spec-
trum of Irganox 1076. Optimal wavenumbers
weighting for each pattern were derived by studying
the linearity of the spectrum with concentration. The
molar concentration ratios inferred from specific
deconvolutions of previous extracts are summarized
in Figure 11. The exact ratio, which accounted all
linear molecules, is also plotted for comparison.

Although the ratio did not sign any substance, it
supported unambiguously that PE2 did not contain
any phenolic antioxidant and that the composition in
phenolic antioxidants in PE3 was significantly differ-
ent from PE1 and PE4 with a likely presence of an
antioxidant consisting of several BHT patterns. It con-
firmed thus the presence of Irganox 3114 including

three BHT patterns in PE3 [Fig. 9(c)]. By contrast, the
lower ratio in PE4 confirmed the presence of a signifi-
cant amount of aliphatic thioethers, identified as Irga-
nox PS802 [Fig. 9(d)]. The predictions of this ratio
were highly reliable and provided an additional
framework to choose between several alternatives.
Other ratios were found to be valuable to improve

predictions presented in Figure 9 at least qualita-
tively. Table III presents the relative concentrations
in some specific patterns as they were identified.
Among them, the acid pattern found in PE1 was
related to stearic acid, which was poorly identified
with the global procedure. The piperidinyl group
typical of Tinuvin 770, Tinuvin 622, and Chimassorb
944 was accurately detected in PE2 and PE4,
whereas none of them were initially detected. Other
patterns such as the ester function and ring patterns
in Irganox 1330 and 3114 were not identified, as
they were either not accurately calibrated by succes-
sive subtractions of spectra or not supported by a
significant variance in the measured spectra.

CONCLUSIONS

A semisupervised deconvolution procedure of FTIR
spectra based on a ridge regression procedure has
been described to identify and quantify the concentra-
tions of plastics additives in polymer extracts. The
methodology was designed to work obtained on com-
plex mixtures including several compounds with ei-
ther known or unknown compounds. The proposed
formulation offered a consistent weighting procedure
to derive sparse solutions focused either on substan-
ces, chemical functions, or a combination of both. This
strategy was particularly suited to additives including
repeated patterns. The automatic switch between a
global and a local solution was performed using an
iteratively reweighted least square criterion, which
zoomed either in or out on unexplained spectra resi-
dues. As the added non-negativity constraints acted

TABLE II
Composition of Processed High-Density Polyethylene Films

Additive name PE1 (mg kg�1) PE2 (mg kg�1) PE3 (mg kg�1) PE4 (mg kg�1)

Irganox 1076 467 6 23 – 156 6 3 159 6 27
Irgafos 168 2497 6 167 – 626 6 40 –
Erucamide 3436 6 116 – 1523 6 152 –
Chimassorb 81 – 3293 6 370 668 6 46 –
Chimassorb 944 – 3327 6 237 – 545 6 26
Tinuvin 622 – 3416 6 960 – 427 6 120
Irganox 3114 – – 463 6 42 –
Tinuvin 326 – – 626 6 61 –
Irganox PS 802 – – – 502 6 17
Triethylphosphitea 969 6 10 969 6 10 969 6 10 969 6 10

a Substance added to the extract, with a concentration expressed as it was present in
the processed film.
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as a Wiener filter, they avoided false positives while
imposing a detection threshold to small contributions
involving 1% or less of the total variance in the meas-
ured spectrum. This inherent limitation was partly
overridden by invoking systematically stochastic res-
onance effects via Monte-Carlo sampling. Adding
randomly a white noise to the measured spectrum
caused low signal intensities to cross more often the
identification threshold and offered statistics to our
nonlinear identification technique.

The whole technique has been implemented
within a specific Matlab toolbox (Mathworks, USA),
so-called ACTIA-LNE, and calibrated on 21 common

additives of polyolefins and four chemical functions
typical of possible nonlisted substances. As the cali-
bration method took into account the linearity and
detection limit of the spectrophotometer as well as
interactions with the extraction solvent, the gener-
ated dictionary of spectra and related optimal
weights depended on the experimental device and
appeared consequently more reliable than commer-
cially available FTIR spectra databases. However,
although the deconvolution method has been
applied to extracts in DCM, it could be directly
applied to processed films in transmission mode or
in attenuated total reflectance subsequently to an

Figure 10 Mass balance in substances with similar technological functions against the theoretical extent in processed
films: (a) PE1, (b) PE2, (c) PE3, and (d) PE4 plotted in Figure 9.
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appropriate calibration. This approach, which
involves a higher contribution of the background
and a lesser sensitivity to trace additives, is currently
under validation in 2D FTIR mode (by changing
temperature). In tested extracts, the background was
both related to the intense bands of DCM and to
polymer residues (oligomers mainly). As the poly-
mer background could not be known a priori, three
commercial virgin flakes of high-density polyethyl-
ene were used to assign a normalized spectrum to
polymer residues. The theoretical concentration asso-
ciated to these residues was therefore an additional
unknown in the inversion problem.

The ill-posedness of the general deconvolution prob-
lem was assessed by calculating the distances between
spectra, the identification and quantification biases for
all possible binary mixtures. A table of confusion was
generated to support the interpretation of false posi-
tives, masking effects, and possible sources of underes-
timations. The whole procedure was applied to four

theoretical and four real mixtures including up to eight
compounds. In all cases, the method provided valuable
conclusions by either identifying the right substances
or substances which were chemically close. The deter-
mination of the lumped concentration of substances
belonging to a same class of additives (antioxidants,
light stabilizers, and surface agents) was as reliable as

Figure 11 Absorption spectra of extracts of processed films by considering: (a) nominal weights for the BHT pattern, (b)
nominal weights for an aliphatic pattern similar to the Irganox 1076 tail; ratio of concentrations between previous pat-
terns. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE III
Predicted Relative Concentrations in Specific Pattern in

Processed Samples

Pattern PE1 PE2 PE3 PE4

BHT 1 (1) 0 (0) 1 (1) 1 (1)
Ester function 0 (1) 0 (0) 0 (0) 0 (6)
Ring in Irganox 1330 0 (0) 0 (0) 0 (0) 0 (0)
Ring in Irganox 3114 0 (0) 0.01 (0) 0 (0.33) 0 (0)
Aliphatic function 15 (17) 1 (1) 7 (8) 24 (59)
Ring in Irganox 770 0 (0) 0.21 (0) 0 (0) 0 (0)
Acid function 0.01 (0) 0 (0) 0 (0) 0 (0)

Real concentrations are expressed in brackets.
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techniques involving a physical separation such as
chromatographic techniques. In real conditions, the
‘‘absolute’’ identification of additives was possible only
for some substances. Appropriate identification and
quantification were revealed after adding random
noise to measured spectra by low confidence intervals
on concentration estimates. When substances were
ranked according to the closeness of their FTIR
responses (i.e., linkage criteria), reliable identification
but possibly poor quantification was recognized by
large confidence intervals but low overlapping rate
between close substances. Poorly identified or quanti-
fied analysis required an additional interpretation of
spectra based on specific chemical functions.

Although some fuzziness may remain after decon-
volution, the identification of possible migrants and
of their amounts in a packaging material is of prime
importance to start an assessment of its compliance
with EU regulations. Indeed for most additives and
contact applications, abacuses or software are avail-
able to calculate the maximum amount in the poly-
mer, which could permit to demonstrate the compli-
ance with mathematical modeling.7 Because of
inherent uncertainty in physicochemical properties,
these approaches do not claim to predict the real
migration rate but an overestimate instead with suffi-
cient safety margin. As a result, the subsequent steps
should focus only on situations (substances and con-
centrations) for which the compliance could not be
demonstrated with the previous approach. Next steps
might include a discussion with the provider or com-
plementary measurements with conventional techni-
ques.22 A companion work aims at integrating data-
bases, simulation tools, and fast identification by FTIR
methods to design automated decision tools to assist
enforcement and control laboratories in identifying
noncompliant plastics materials intended to be in con-
tact with food. As a rule of thumb and in case of
doubt on the real substance, an additive including n
subunits can be always replaced by a migrant consist-
ing in a single unit at a concentration n times higher.
The question for compliance testing is then: ‘‘which
value of n could demonstrate the compliance?’’ When
the calculated n is suspected to be too small, a valida-
tion by or with the provider is required.

As the methodology was proven to be quantitative
at least for lumped additives, it might also be envi-
sioned to monitor desorption rates during standard
migration tests.

NOMENCLATURE

Roman symbols

Ai substance used as additive
C molar concentration (mol L�1)

C concentration vector
D dictionary matrix of known substances
DCM dichloromethane
i index
I identity matrix
j index
PM polymer and related residues
r correlation coefficient
S measured spectrum (absorbance)
S measured spectrum vector
Uj unidentified substance (not belonging to the

dictionary)
X arbitrary substance
Y arbitrary substance
W weight matrix

Greek symbols

a molar extinction coefficient of the
considered cuvette (L mol�1)

b concentration bias (mol L�1)
c molar concentration in unknown substance

(mol L�1)
e model error (absorbance)
e error vector
D weighted dictionary matrix of known

substances
Dr weighted dictionary matrix of unknown

substances
k wave length
n regularization coefficient in eq. (6)
R effective spectrum (absorbance)
x wavenumber

Special operators

diag(X) main diagonal of matrix X
<X> ensemble average of X
XT transpose of X
var(X,Y)variance of X respectively to weights Y
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17. Földes, E.; Maloschik, E.; Kriston, I.; Staniek, P.; Putanszky, B.

Polym Degrad Stab 2006, 91, 479.

18. Yagoubi, N.; Denuzière, A.; Pellerin, F.; Ferrier, D. Ann Phar
Fr 1996, 54, 126.

19. Vitali, M. Polym Test 2001, 20, 741.
20. Silverterin, R. M.; Webster, F. X.; Kiemle, D. J.Spectrometric

Identification of Organic Compounds, 7th ed.; Wiley: New
York, 2005.

21. Murphy, J.Additives for Plastics Handbook, 2nd ed.; Elsevier:
Oxford, 2003.

22. Gillet, G.; Vitrac, O.; Tissier, D.; Saillard, P.; Desobry, S. Food
Addit Contam 2009, 26, 1556.

23. Bagnati, R.; Blanchi, G.; Marangin, E.; Zuccato, E.; Fanelli, R.;
Davoli, E. Rapid Commun Mass Spectrom 2007, 21, 1998.

24. Sun, C.; Chan, S. H.; Lu, D.; Lee, H. M. W.; Bloodworth, B. C.
J Chromatogr A 2007, 1143, 162.

25. Adams, M. J.Chemiometrics in Analytical Spectroscopy, 2nd
ed.; The Royal Society of Chemistry: Cambridge, 2004.

26. Tikhonov, A. N.; Arsenin, V.Solution of Ill-Posed Problems;
Wiley: New York, 1977.

27. Hansen, C. Numer Algorithms 1994, 6, 1.
28. Coleman, T. F.; Li, Y. SIAM J Optim 1996, 6, 1040.
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